Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(7)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38380755

RESUMO

In this work, we combine the concepts of magnetic circular dichroism, nanocavities, and magneto-optical hyperbolic metamaterials (MO-HMMs) to demonstrate an approach for sensing down to a few molecules. Our proposal comprises a multilayer MO-HMM with a square, two-dimensional arrangement of nanocavities. The magnetization of the system is considered in polar configuration, i.e., in the plane of polarization and perpendicular to the plane of the multilayer structure. This allows for magneto-optical chirality to be induced through the polar magneto-optical Kerr effect, which is exhibited by reflected light from the nanostructure. Numerical analyses under the magnetization saturation condition indicate that magnetic circular dichroism peaks can be used instead of reflectance dips to monitor refractive index changes in the analyte region. Significantly, we obtained a relatively high sensitivity value of S = 40 nm/RIU for the case where refractive index changes are limited to the volume inside nanocavities, i.e., in the limit of a few molecules (or ultralow concentrations), while a very large sensitivity of S = 532 nm/RIU is calculated for the analyte region distributed along the entire superstrate layer.

2.
Opt Lett ; 48(3): 680-683, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723562

RESUMO

We demonstrate a concept for the active manipulation of radiated fields by a magnetoplasmonic half-wave dipole nanoantenna. Our idea comprises a two arms nanoantenna, made of metallic ferromagnetic cobalt-silver alloy (Co6Ag94), inspired by the analogous radio frequency half-wave dipole antenna design. Numerical results, obtained under the magnetization saturation condition, indicate a tilting of the radiated beam depending on the magnitude and sense of the magnetization of the ferromagnetic material. Significantly, we obtained tilting angles as large as ±9.7∘ around the y axis for the magnetization placed along the x or z axes, respectively. Results in this work not only open up a new, to the best of our knowledge, way to dynamically manipulate the beam steering at the chip-scale, but also contribute to unveil novel magneto-optical effects at the nanoscale.

3.
ACS Appl Mater Interfaces ; 15(6): 8617-8623, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36689678

RESUMO

On-chip wireless communications require optical nanoantennas with dynamically tunable radiation patterns, which may allow for higher integration with multiple nanoantennas instead of two fixed nanoantennas in existing approaches. In this paper, we introduce a concept to enable active manipulation of radiated beam steering using applied magnetic fields. The proposed system consists of a highly directive Yagi-Uda-like arrangement of magnetoplasmonic nanoribs made of Co6Ag94 and immersed in SiO2. Numerical demonstration of the tilting of the radiated beam from the nanoantenna on its plane is provided with full-wave electromagnetic simulations using the finite element method. The tilt direction of the radiated beam can be changed by reversing the magnetization direction, while the conventional plasmonic nanoantenna pattern is recovered by demagnetizing the system. The geometry of the nanoantenna can be tailored to work at optical or infrared wavelengths, but a proof of concept for λ = 700 nm is conducted for taking advantage of the high magneto-optical activity of Co6Ag94. The design was based on experimental data for materials that can be fabricated via nanolithography, thus permitting magnetically on-chip reconfigurable optical wireless communications.

4.
Sensors (Basel) ; 22(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365860

RESUMO

We demonstrate, numerically, a new concept for on-chip magneto-optical (MO) modulation in dense wavelength division multiplexing (DWDM) applications. Our idea uses materials and mechanisms that are compatible with current silicon-on-insulator fabrication and CMOS technologies for monolithic integration. The physics behind our idea stems in the exploitation of the enhanced MO activity of a micro-ring, made of cerium substituted yttrium iron garnet (Ce:YIG) material, to actively manipulate the resonance wavelengths of an adjacent micro-ring resonator (MRR) of silicon (Si). This active manipulation of the latter MO-MRR structure is used to modulate the optical signal traveling through a side-coupled Si bus waveguide. Moreover, by proper tailoring multiple MO-MRRs (side-coupled to the single Si bus waveguide) to match wavelength channels in DWDM across the entire C-band optical communications spectrum, we extend our proposal to massive and dynamic MO modulation in DWDM applications. Significantly, we noticed that the active MO shifting of the resonant wavelength (used for MO modulation here) can be used for improvements in the spectrum utilization efficiency in future elastic optical networks (EONs).

5.
Sensors (Basel) ; 22(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36236435

RESUMO

Optical wireless transmission has recently become a major cutting-edge alternative for on-chip/inter-chip communications with higher transmission speeds and improved power efficiency. Plasmonic nanoantennas, the building blocks of this new nanoscale communication paradigm, require precise design to have directional radiation and improved communication ranges. Particular interest has been paid to plasmonic Yagi-Uda, i.e., the optical analog of the conventional Radio Frequency (RF) Yagi-Uda design, which may allow directional radiation of plasmonic fields. However, in contrast to the RF model, an overall design strategy for the directional and optimized front-to-back ratio of the radiated far-field patterns is lacking. In this work, a guide for the optimized design of Yagi-Uda plasmonic nanoantennas is shown. In particular, five different design conditions are used to study the effects of sizes and spacing between the constituent parts (made of Au). Importantly, it is numerically demonstrated (using the scattered fields) that closely spaced nanoantenna elements are not appropriated for directional light-to-plasmon conversion/radiation. In contrast, if the elements of the nanoantenna are widely spaced, the structure behaves like a one-dimensional array of nanodipoles, producing a funnel-like radiation pattern (not suitable for on-chip wireless optical transmission). Therefore, based on the results here, it can be concluded that the constituent metallic rib lengths must be optimized to exhibit the resonance at the working wavelength, whilst their separations should follow the relation λeff/π, where λeff indicates the effective wavelength scaling for plasmonic nanostructures.


Assuntos
Nanoestruturas , Ressonância de Plasmônio de Superfície , Nanoestruturas/química , Ressonância de Plasmônio de Superfície/métodos
6.
Phys Chem Chem Phys ; 24(9): 5431-5436, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171161

RESUMO

All-dielectric nanophotonic devices are promising candidates for future lossless (bio)sensing and telecommunication applications. Active all-dielectric magnetophotonic devices, where the optical properties can be controlled by an externally applied magnetic field, have triggered great research interest. However, magneto-optical (MO) effects are still low for applications. Here, we demonstrate a concept for the enhancement of the transverse MO Kerr effect (TMOKE), with amplitudes of up to 1.85, i.e., close to the maximum theoretical values of ±2 (in transmission). Our concept exploits the lateral leaky Bloch-modes to enhance the TMOKE, under near-zero transmittance conditions. Potential applications in (bio)sensing structures are numerically demonstrated. The effects of optical losses were studied using different combinations of materials. Significantly, we demonstrate TMOKE enhancements of two orders of magnitude in relation to recent experimental studies, using the same building materials.

7.
ACS Appl Mater Interfaces ; 13(50): 60672-60677, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34882403

RESUMO

Nanostructures exhibiting large transverse magneto-optical Kerr effect (TMOKE) are required for magnetoplasmonic biosensing if the aim is the minituarization and integration into microfluidic devices. In this work, we present a general strategy to design nanoarchitectures with enhanced TMOKE, which consist of an arrangement of gold ribs deposited on an magneto-optical (MO) dielectric slab of Bi:YIG (bismuth-substituted yttrium iron garnet) with a SiO2 substrate surrounded by water. Using the finite element method (FEM), we demonstrate numerically that the near-zero-transmittance condition is the most important requirement for high TMOKE values. This can be reached through geometric optimization of the nanoarchitecture by tuning the period, height, and width of the grating, thus leading to resonances at wavelengths where the MO dielectric slab has high MO activity. We also show that the TMOKE amplitude can be further increased if losses in metal ribs are reduced. For a magnetoplasmonic grating with optimized geometry, we demonstrated the potential detection of biologically relevant analytes with sensitivity in the order of 102 nm/RIU (refractive index unit). Since the nanoarchitecture proposed is experimentally feasible with, e.g., nanolithography techniques, one may expect that the design strategy may inspire the development of efficient magnetoplasmonic sensing platforms.

8.
Opt Lett ; 46(10): 2396-2399, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988592

RESUMO

We numerically demonstrate an all-dielectric approach for magnetically tunable add/drop of optical channels in dense wavelength division multiplexing applications. Our concept comprises a micro-ring resonator, with an inner magneto-optical disk, side-coupled to two waveguides. The simulation results, obtained within the ITU-T G.694.1 recommendation, indicate high performance add/drop of odd and even optical channels (along the entire C-band) by flipping the intrinsic magnetization of the disk. Since the simulations were performed with CMOS-compatible materials, it is hoped that the structure proposed here can be integrated into future ultrafast optical communication networks.

9.
Nanotechnology ; 31(50): 505715, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33025922

RESUMO

The design of optoelectronic devices made with ZnO superlattices requires the knowledge of the refractive index, which currently can be done only for films thicker than 30 nm. In this work, we present an effective medium approach to determine the refractive index of ZnO layers as thin as 2 nm. The approach was implemented by determining the refractive index of ZnO layers ranging from 2 nm to 20 nm using spectroscopic ellipsometry measurements in multilayers. For a precise control of morphology and thickness, the superlattices were fabricated with atomic layer deposition (ALD) with alternating layers of 2 nm thick Al2O3 and ZnO, labeled as N ZnO-Al2O3, where N = 10, 20, 30, 50, 75 and 100. The total thickness of all superlattices was kept at 100 nm. The approach was validated by applying it to similar superlattices reported in the literature and fitting the transmittance spectra of the superlattices.

10.
Molecules ; 25(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33065967

RESUMO

We investigate the plasmonic behavior of a fractal photonic crystal fiber, with Sierpinski-like circular cross-section, and its potential applications for refractive index sensing and multiband polarization filters. Numerical results were obtained using the finite element method through the commercial software COMSOL Multiphysics®. A set of 34 surface plasmon resonances was identified in the wavelength range from λ=630 nm to λ=1700 nm. Subsets of close resonances were noted as a consequence of similar symmetries of the surface plasmon resonance (SPR) modes. Polarization filtering capabilities are numerically shown in the telecommunication windows from the O-band to the L-band. In the case of refractive index sensing, we used the wavelength interrogation method in the wavelength range from λ=670 nm to λ=790 nm, where the system exhibited a sensitivity of S(λ)=1951.43 nm/RIU (refractive index unit). Due to the broadband capabilities of our concept, we expect that it will be useful to develop future ultra-wide band optical communication infrastructures, which are urgent to meet the ever-increasing demand for bandwidth-hungry devices.


Assuntos
Óptica e Fotônica/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Elementos Finitos , Fractais , Refratometria , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/métodos
11.
Sensors (Basel) ; 20(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354016

RESUMO

Plasmonic materials, when properly illuminated with visible or near-infrared wavelengths, exhibit unique and interesting features that can be exploited for tailoring and tuning the light radiation and propagation properties at nanoscale dimensions. A variety of plasmonic heterostructures have been demonstrated for optical-signal filtering, transmission, detection, transportation, and modulation. In this review, state-of-the-art plasmonic structures used for telecommunications applications are summarized. In doing so, we discuss their distinctive roles on multiple approaches including beam steering, guiding, filtering, modulation, switching, and detection, which are all of prime importance for the development of the sixth generation (6G) cellular networks.

12.
Appl Opt ; 57(15): 4228-4231, 2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29791398

RESUMO

A photonic crystal fiber Mach-Zehnder interferometer design was optimized to obtain high performance and ultralow chirp. Two long-period gratings were used to excite the cladding modes, and the rich structure of the cladding was tailored to obtain a slightly chirped free spectral range, as required by the Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T) Norm G.694.1. Finally, a fabrication tolerance analysis was performed. The advantages of the proposed device are an ultralow chirp, high bandwidth, and fabrication robustness tolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...